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1. INTRODUCTION

The optical flow approach has emerged as a maghintgue for estimating object motion in image
sequences [1]. Additionally, novel theoretical s of motion and optical flow estimation had aquee
[2], [4] and [3]. However, the results obtained mmpst optical flow techniques are poor because trey
adversely affected by large illumination changed layymotion discontinuities. Recently however, éhkave
been two trends in the development of optical flalgorithms. One has emphasized higher accuracy; the
other faster implementation. These two trends hasen independently pursed, without addressing the
accuracy vs. efficiency trade-off [5].

The optical-flow computation consists on the estiomof the apparent 2D movement field in the
image sequence, as introduced by Horn and Sch@jckn[this way, each pixel has an associated wgioc
vector. This technique can be combined with seveagimentation techniques in order to improve its
accuracy or implement object tracking. Many streedor optical-flow computation have been publghe
[7]. Among these methods, the gradient-based amedctirrelation-based approaches are the two most
commonly used techniques.

Most of the recent advances in optical-flow compata have focused their improvements on
achieving a high accuracy. Examples of these rekdalds can be found in [8] and [9]. Moreoverith are
few works that focus on the computation speed dspkie the achievement of a faster speed withtiee
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constrains. Additionally, innovative theoreticaldysis of motion and optical flow estimation encage the
use of custom electronic devices [10], [11] and.[12

The classical approach for image sequence analgsially involves full image processing. In the
optical flow computation the spatial and temporatihtives are calculated for all pixels on all ges,
despite the fact that images could have sufferedbnéhanges from one frame to the next.

The iterative form for optical flow computation cdre implemented by software on a general
purpose microprocessor. However, in order to pmd@age sequences in real time it is interestings®
programmable devices, ASIC, analog integrated itinduSI| [13], clusters of processors [14] or spécia
processors [15], though these last solutions ar@naatical as they are very expensive.

FPGAs have been chosen to develop a cheaper im pastotype. A custom architecture of this type
was proposed by Arribas & Monasterio [16]. Theyqassed 5660 pixels, images at 19 fps using only three
iteration cycles per each pair of images. Initiatlye default result is assumed as a zero valualfaptic
flow field vectors per iteration cycle.

In a more recent work, Martin, et al., [17] shomew optical flow computing technique. In this
work, the iterations are made among a group ofessige images in an image sequence, not only betaee
pair of two consecutive images. In other wordsingls iteration per image pair is performed andrémsults
are used as input for a second iteration, but ndth & new pair of images. This idea is based on the
assumption that changes between two consecutivgeisnare negligible and the results obtained artiluse
for an iterative process. Martin et al. presentltssafter processing 64 images, but using only ieration
per pair of images.

Finally, Sosa [18] shows a new optical flow compiota architecture, with change-driven data flow
processing. In that the work it was shown the systeffectiveness depends on the percentage af ptagils
whose variation intensity is below the thresholdhich was a fixed threshold, processing 2586 pixels,
images at 80 fps using ten iteration cycles pargfdimages.

It is important to know that in real scenes, theik be inevitable noise that can randomly change
pixel intensity values. For this reason it is nsegg to use dynamically threshold adjustment thiit w
significantly reduce the problem. Robustness tgingrillumination conditions is achieved by an imative
technique that combines a gradient-based optioal fhethod, change-driven processing and an adaptive
threshold.

This paper uses the same principles of the threksaescribed before in [10], [16] and [17]: image
changes between two consecutive images are miglathenimage intensity change appears due to laxel p
movement. In this way, if there are not intensityaieges in any consecutive images pair pixels, there is
no movement, and these images will not be processed

The system has been developed for implementaticanofltera development board, which includes
a Stratix EP1S60F1020 FPGA and 256 MBytes of DDRRBM memory. The Overall system was designed
in VHDL and has been simulated using ModelSim.

2. THEORETIC ANALYSIS
In this section, the original problem for opticldw computation according to Horn & Schunck’s
[6] algorithm is considered, and an innovative téghe for optical flow computation is introduced.

2.1 Horn & Schunck Optical Flow Algorithm

According to [6], and discussed in [18], the OgtiElww computation is obtained by:
E,(EQ"+EV"+
n+1=an_ X(EX Ey Et)' (3)

u
@+ Ex2 n Eyz)

E,(E0"+E,0"+E)

Vn+1 :vn _
(az + Ex2 + Eyz)

, (4)

where U, V are the Laplacian of velocities v anda is an adjust parameter aBd, EyandEt are the partial
derivates of image intensity relatedxoy andt respectively. These equations have an iterative faecause
u andv are function of0 andv . If the iteration number is much bigger, the resuill be more accurate, but
it will also increase the calculation time. The atjons (3) and (4) show an iterative dependenases the
result depends on the previous calculation.

The method used, by Horn and Schunck [6], to determ measurement &, EyandEt is:
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where the column index j corresponds to the x timadn the image, the row index i to the y direatj
while k lies in the time direction.
On the other hand, the approach used for the edionlof the Laplacians of u and v is:
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It is necessary to obtain the spatial and tempgnadient values for computing optical-flow. To do
this, at least two consecutive images of the sexpiare required.

2.2 Change-Driven Image Processing

The change-driven data flow processing has beeledgdpefore as part of another image processing
algorithm, by software [19] and by hardware [18heTprinciple is based on two considerations; argama
pixel, representing a point on an object, doeschange its brightness value from an instant of tireethe
next instant of time+ &, and the images usually change a little from framdrame, especially if the
acquisition time is short. This justifies the eziste of a module that locates only the pixels trate
changed. The idea of such a module is biologicaigpired. The eye can work over a large range of
luminance levels [20]; it must also be able to harbde different rates of change in luminance hie $patial
domain, spatial vision can be characterized bycthrast sensitivity functiorQSPH.

In this work the parameter Change Sensitivity Thoés (CST) is used. This condition can be
expressed as follows: when the pixel intensity llelifference between two consecutive images is tieas a
threshold, then this pixel will not be processelisTestriction can be written with the equation:

_ 1 mag>CST
ch =y mag CST (10)

wheremagis the grey level differenc&STis the threshold, an integer value that is alwaysll. Detected
changech will be 1 if there is a change in the pixel orf(hot. With small values for the threshold many
pixels will be detected as moving pixels and theilenot be a big time reduction. On the other hawith
higher values for the threshold a major speed-libe&iachieved, but with a loss of accuracy.

The change-driven image processing theoretical dsppewas estimated by software before the
hardware implementation. The formal optical flondacthange-driven optical flow algorithms have been
implemented using C++.

The algorithm is significantly different, and subsently, the computing resources needed (and
therefore the hardware required) are reduced wihamge-driven processing is applied. A look-up table
(LUT) is necessary to compare two consecutive irmagel detect which pixels have changed on the image
Only pixels that have changed (ab&®7) initiate the corresponding processing instrucion
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The number of clock cycles needed to implement dhiginal optical flow algorithm can be
expressed as:

cycles = 8(mxn) + k(16(mxn)+5(mxn)), (112)

where nxn is the image size and k is the number of iteratid he first term indicates the cycles need to
estimate the partial derivatives, the second tardicate the cycles needed to estimate the velecitie
Laplacian. The optical flow modified algorithm couatption cost is represented as:

cycles = 3(mxn)+ 8 p (mxn) + 2ko(16(mxn)+ 5(mxn)), (12)
wherep is defined by:

—q__ "N
p=1 (mxn) (13)

and wherey is the number of pixels that does not change. &dlt be a few pixels that change and speed-
up the optical flow computation if theSTis high. TheCSTselection is a very important step. It is possible
to conclude that th€STis a critical value in change-driven processingoathms, a too low value may
include spurious changes, while a too high valukesase significant scene changes.

3. CHANGE SENSITIVITY THRESHOLD SELECTION

The Change Sensitivity Threshol@{T) selection is a very important step. The focughia section
is to determine whatSTvalue is the best, and the strategy@&Tcomputation on line. In [18] there is an
example of the change-driven image processing yalplied to the optical flow computation where an
empirical fixed CST was used. The experiments peréal, with constant brightness, recommer@iST less
than five for obtaining useful results in the optidlow computation. It was shown that the system
effectiveness depends on the percentage of siaétspvhose variation intensity is below 68T

It is very important to make out, that: the HornS&hunck’s formulation assumes that an image pixel,
representing a point on an object, does not chéedmightness value from an instant of time the hext
instant of timet+ &. However, in a realistic scene this is almost ndhe case. A pixel can change its
brightness value because an object moves or betlagiskumination of the scene changes. As a rethil
noise will give a number of false positives thatl weduce system accuracy and performance. However,
dynamically adapting th€STsignificantly reduces the problem, and keeps tbmk& Schunck formulation.

Some image sequences are used for motion estimatioler varying illumination. The utilized
sequences are commonly used as a test bench foaldfmw algorithm evaluation purposes. They haeen
downloaded from the Computer Science Departmerth@fUniversity of Western Ontafiand from the
Computer Vision Research Group at the Universitptigd. Each sequence used here is representative of
three common situations in image processingtdkesequence has been acquired in an outdoor envirdnme
without controlled illumination conditions; tHeubic sequence has been taken from an indoor environment
with controlled illumination, andsphere sequence has been generated artificially, withingt noise
introduced by most cameras (synthetic sequenceékefjuences are in B/W, with 256 grey levels, asvsh
in figure 1. The pixel intensity level is given as 8-bit binary number. The minimum intensity diéfece is
1 in this case. If th€ST=Q then all the pixels are processed and thereal®nefits in using change-driven
processing. The last case will never be used becéumdicates that the two consecutive images are
completely different.

A small study of the three sequences showed teat tre changes. Considering 11 image pairs (¢f eac
sequence), about 70% of pixels do not change.spheresequence (synthetic type) showed that the percent
of pixels without change is constant. It is possitol see this in figure 1. An opposite behavi@rasented by
the sequenctaxi. It is a natural sequence, which showed the ssigtlercent of pixels without change and
has an erratic behavior. The last sequeriRebig, is an intermediate point between the two prewiou
sequences.

The studies indicate that the synthetic sequestes$), as: sphere, square2, translating and divetggeg
have a percent of pixels without change near tactimstant. Then it is necessary to use only a C&TFhe

! ftp.csd.uwo.ca/pub/vision.
2 http://www.cs.otago.ac.nz/research/vision/.
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natural sequences are more complex. T&T selection depends on environment. It was necedssary
develop a strategy to dynamically adapt @&T.
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d)

Figure 1. Sequences used and their changes inddeipairs.

The selection of an appropriate algorithm is noeasy choice since each algorithm makes different
assumptions about the image content or environgteracteristics.

Our approach takes the average & of gray level gk Ideally, the whole image should be an
average in order to compute the image averagelgvey; but this is not necessary. The principlsiisple. If
there are not changes between two consecutive sndigat is, the brightness is constant and therefis
movement, then the grey level average must beaime $or each image. However, if there is not movame
but there are illumination or brightness changes tthe grey average is different between two carisec
images. This difference will determine t6&Tvalue used to implement the change-driven imageqssing.

Then, it is possible to take several pixels (nbirahge) to compute the image average grey level.
Therefore, the difference between two consecutierages (of two consecutive images), will indictite
appropriateCST.

In [20] the grey level average was computed by:

m

wheremxn denote the grid dimension, i and j are the pixslrdinates (they are not consecutive pixe|s,
=1k, 2k, ... &1, if k = 1 all the image is average). The grey level avereae computed off-line.

In this work the grey level average was computedima and by experimentation with different
image sequences in order to determine the totaliatraf pixels needed. Then, it was necessary tsiden
1) the memory accesses are in bursts of 32 bylea accumulator register was used, 3) the pixeinsest
be distributed in each image window, 8 windows3afx 32 pixels were used, in each image and 4) the
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easiest way to compute the value was to obtaixel pet with a power of two numbers of pixel. Thirg
integer division consists of only right shifts.

4. ARCHITECTURE

The diagram of the hardware platform using a Stfal development board, which uses a Stratix
EP1S60F1020 FPGA to implementing the optical flommputation strategy discussed in the previous
sections, is shown in Figure 2.

PCI Bus
A Stratix PCI Development Board

FPGA RN hg s
: : D
-] |[MegaCore _ _ : Optical Flow: m R
PCl T7: computation: sk [ G

' . i

............. .

CPU -

A

CARD

v—b \gggg —»{ MONITOR

Figure 2. Diagram of the hardware platform usir§fratix PCI development board and other components
used by the system.

The FPGA architecture has been divided into fivedubes: threshold selection module,
Gradient/LUT module, data selection module, velesitmodule and finally the Laplacian module. The
modules have been described in [18]. The main gdmnin this work, were the Treshold Selection Medu
and Data Selection Module.

The optical flow algorithm requires a large FIFOmuey that can be implemented in the FPGA.
The EP1S60F1020C6 has 5,215,104 RAM bits.

It must be noted that the calculations made with ltlardware modules are implemented using
integer arithmetic, since it requires less resautban a floating point approach. The divisionsehheen
normalized to the power of two and implemented &agla shift. The idea is to optimize the use afaerces
and to increase the speed of the system.

4.1 Threshold Selection Module

The threshold selection module computes the avepage set grey level. The pixel amount is a
power of two. Thus it is not necessary to implerimena division, which is a time occupying operatidine
pixel set was fixed as a grid of*88 pixels uniformly distributed along the image.atlallocation gives a
total of 64 pixels per image. This module architeetis very simple. A fast-carry adder and a rigifitter
have been employed.

inputs

ADD

Y

Accumulator/shift-
right register

L/
output-date

Figure 3. Threshold module block diagram.
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The latency of this module is 5,130 clock cyclesl@6 MHz. This time is necessary to read the
pixels from memory. The access memory frequenc$38MHz. TheCSTis computed and sent to the
Gradient/LUT module so the change table (LUT) carbhilt. It is necessary an accumulator registeadad
the read pixels, in this stage, see figure 3. Atehd of this process a shift-right implementedsitiv must
be executed. Because of this, it is necessaryhbatixels number be a power of 2.

4.2 Data Selection Module

The outputs of gradiefiix, EyandEt must be 72 bits, to allow a signed word assumaahepixel is
9 bit (2 complement), as shown in figure 6. Thré€d-memories with 32 words of 216 bits each, ardus
for storing the outputs. At the same time the outgdil is stored in a 32 x 8 FIFO memory. The LUTess
and data selection are driven by the selectionrobbet module. The data selection module readd-th€ in
order to know which of the pixels has changed sosilection oEx, EyandEt components can be started.
Then, the data processing begins when the first WdTd is read. An example of this is shown in figur
when the first word is LUT = [01011000], note thwatly three pixels have changed LUT(6), LUT(4) and
LUT(3). This indicates thaf6,4,3) components fronEx, Ey and Et were selected, also that the initial
laplacian values (LU and LV) were introduced in@rdo compute the speed, all the results are storad
new FIFO with 256 words of 45 bits. When the regdifieach word from the LUT is completed, each word
is stored in a new FIFO memory called LUT2.

mod_LUT/Grad

Change Gradient Gradient Gradient

detection computing computing computing

ch Iy I I
Y 8 bits 8 x 9 bits 8 x 9 bits 8 x 9 bits
R T e i 2 fifo_grad_out »
n 1
' FIFC FIFO FIFO FIFO '
' 1. [71..0 1[71..0 1[71..0 .
ot J[71..0 JM71..0] {71..0] :

: 0101100 |x7|x6|x5|x4| x3|x2|x1|x0 Iy7|y6|y5|y4I yslyzlyllyo |t7 |t6|t5|t4|t3|t2|t1|t0 E
1 1

------------------------------------------------------- n
vy vy
FORIiINOTO 7 LOOP
IF LUT() ="1' THEN
ASE i OF
WHENO=>OUT <=l &l & ;
WHEN1=>0UT<=l & & ;
WHEN 2 =>0UT <=I| - &l Ve &I o
WHEN3=>OUT<=l & & ;
WHEN4=>0UT<=l &l
WHEN5=>0UT <=l &l & ;
WHEN6=>0UT <=l & & ;
WHEN 7 =>0UT <=I| - &l . &I o
ENDIF
END LOOP
OUTPUT
y LU, LV,

0101100 1 l I mi | fffgﬂ_ﬂg;:f_"gurtyl
FIFO L SeleC P [ [ox [wox | [ [[wox |

LUT2 lh lly llx lLU lLV
Write Ixs Iye Its 0 0
I, 1, | 0 o

t4
Iy g Iy O 0

fifo_vel_in 256 words of 45 bits

To velocity modul

Figure 4. Data selection module.

One additional function of the selection controlleodule is to read the essential components and
store them in th&IFO_vel_in memory so the next iterations can be performed.
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5. RESULTS

In this section the optical flow computation perfad by the hardware system is compared to a
floating-point software implementation. The hardgvanodules are implemented using integer arithmetic.
Additionally, a study was made to analyze the amcyrof the model proposed in relation to the oagin
Horn & Schunck model (without the change-driveni@gl using 10 iterations. The algorithm and images
sequences are available from (ftp://ftp.csd.uwpidai3ision/) and from
http://www.cs.otago.ac.nz/research/vision.

5.1 Hardware Platform

This design was implemented on the Stratix PCI kbgweent board, with a FPGA (EP1S60F1020).
The device has 57,120 Logic Elements (LE), 144taligiignal processing (DSP) block with (9-bit x ig-b
embedded multipliers and 5,215,104 memory bits.i#hatthlly, the development board has 256-MByte of
external PC333 DDR SDRAM. It is very important besa when using for computer vision task, high-speed
memory is critical.

All the architecture has been developed in VHDLve3al tests were performed before synthesis to
validate the design. Different tools were used ddp® on the part of the implemented system being
considered.

First the processing modules included into FPGAewtested employing Quartus Il software. Next
the system was simulated including the SDRAM maslalied the pci_mt32 MegaCore function [AUG 04].
In this stage synthetic images were used as welkalsimage sequences. Finally the overall systeas w
synthesized with the PCl and SDRAM controller riestns.

The whole design utilized 17, 650 Logic Elements%3of the total 57,120), 3,199,874 RAM block
bits (61% of the total 5,215,104) and 8 DSP blodit8 elements (6% of the total 144).

5.2 Synthetic Image Sequences

The main advantages of synthetic inputs are thBt rRetion field and scene properties can be
controlled and tested in a methodical fashion.drtipular, it is possible to access the true 2-Oiomofield
and quantifying performance.

This design was tested on two synthetic sequercebdw its effectiveness. The use of synthetic
sequences indicates tH@STmust be minimum (that is 1), as explain in sec8oBoth sequencesduare?2
andtreed have an established ground truth and are commesdy for benchmarking. A bit level simulation
coded in MATLAB was programmed to evaluate the atgm’s accuracy. In all cases 10 iterations was
used.

The first sequence tested was sq@are2sequence; the used frames were 6 and 7. The amytda
of the square2sequence was 2.3°, in hardware implementation. iBuhe standard deviation was 9.99, is
best respect to full processing software implenteraas can be seen in table 1.

A more complex synthetic sequence was testedDiherging Treesequence. In this sequence, the
camera moves along its line of sight; the expan$imus is at the centre of the image scene, angema
speeds vary from 1.29 pixels/frame on left sid&.®6 pixels/frame on the right; the used frames2® 21.

In this sequence the relative angular error wag°@&afd the relative St. Dev was 2.0°. It is noést laccurate,
the reason is that only 10 iterations were execwrd the operations were performed using integer
arithmetic.

Table 1. Software and hardware implementation exonparison. Optical Flow Full Processing (OFFP),
Change Driven Hardware Optical Flow.

Sequence OFFP CDHOF

A. Error St. Dev. A. Error Relative Error  St. Dev.
Square2 55.22° 11.19° 57.60° 2.37° 9.90°
Treed 13.56° 11.79° 21.62° 8.06° 13.80°

5.3 Real Image Sequences

Three real sequences were also used to test tf@mance of the proposed algorithm. There are
two types of tests: a) movement and illuminatiorarges and b) no movement but with illumination
changes.
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There is movement and there are illumination changes.

Figure 5 shows: 5dRubic sequence; that used the frames 6 and 7te&fl®c sequence; that used
frames 40 and 41. In each sequence is computgdRR® (by software) and CDHOF (by hardware).

Traditionally, in order to obtain the calculatedtioal flow vectors by software, it is necessary to
process all the pixels from two consecutive imadémt is why the results show a great amount oicapt
flow vectors. Nevertheless, many of these vectorsaat mean real movement and its existence isebeltr
of illumination or brightness changes. In this wodkhange driven image processing (CDIP) is used in
conjunction with an innovative hardware architeetiso the amount of optical flow vectors representeal
object movement is a major proportion.

It is possible to see that the optical flow comgtiota by software is denser per image than the
optical flow computation by hardware. Many of thegetors from the software computation are theltedu
noise and interference, and their presence puiteteslear identification of moving objects withimetscene.

b)

Figure 5: Shows a frames of the Rubic sequenceagrat sequence, and its calculated optical flostore
left to right, by software and hardware computation

On the other way, there are a few optical flow gextresulted from the hardware architecture
computation, and the major portion of them are poed by the moving objects. Additionally, it is pitde
to observe that the achieved image is best foindisishing the moving objects.

As with the above two sequences, the density oicalpflow vectors is greater in the results
obtained by software than those obtained by hamlwdowever, many from the software computation oo n
represent real movement but apparent movement secdullumination changes. The results from hanmdwa
computation show few optical flow vectors and theving object are easily detected.

There is no movement and there are illumination changes.

The rubic sequence was used for the first testing develapemider to evaluate such a situation
based on a known image sequence. The sequencdésahavo versions of the same image, one raw laad t
other modified with a different level of intensityjth the same amount of pixels. So, the sequeaseni
movement but illumination changes as can be sedigune 6. This modification was made reducing each
intensity pixel from the raw image by 5, achievimgecond image with apparent illumination changés b
without movement. This testing was also usefulefealuating the performance of the hardware arctitec
developed for processing change driven optical flass well as the behavior of the module for detecti
illumination changes and adjusting t68T

Figure 6a)Rubic sequence, shows the result from the optical fleamputation by software. The
result obtained by hardware is a white image bexdlis processing was not performed according to the
working of the module for detecting illuminationatges, correctly adjusting the threshold. This nedu
worked with high efficiency because the charadiessof the test. As the illumination changes wapplied

Real-time Optical-flow Computation for Motion Estition under Varying lllumination ... (Julio C. Sosa)
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in the same quantity for all pixels, the moduleayates an optimum mask for the adequate calculafitime
threshold.

b) - i

Figure 6: a) There is an illumination variation Imot movement. Left to right: original image, moddi
image and its calculated optical flow vectors bfvgare and b) Shows two consecutive images, ofdape
sequence, and their calculated optical flow ved&dt to right, by software and hardware computatio

More complex testing was implemented in order taleate the performance of the proposed
system. Multiple sequences were captured and selatith notorious on purpose illumination changes b
without movement at all. Figure 6b) shows two inm{ks and 16) from sequen€&PEC This figure also
shows the optical flow vectors obtained by softweamd hardware computation. It can be seen thaijitieal
flow obtained by hardware computation has a fewenlmer of optical flow vectors and the deploymemts a
minor, considering its magnitude, than it has ot#tdi through traditional implementation (by software
computation)

5.4 Speed-Up Comparison

In this section a computational cost comparisoméle. In order to evaluate the profits of using
change driven image processing instead of full @ssing, three sequences were analyaduiq, sphere and
taxi). The most important result is that the processimg is dramatically reduced. The Table 2 shoves th
speed-up comparison between the original model QEBB% temporal cost) and the proposed model.

Table 2.Speed-Up comparison, Optical Flow Full Besing (OFFP) and Change Driven Hardware Optical

Flow (CDHOF).
Sequence Rubic  Sphere Taxi
OFFP 100% 100% 100 %

CDHOF 9% 14 % 12 %

It can be seen that the processing time is redecediderably. Even in the case of the sphere
sequence the processing time is reduced by 14 #fedime needed for the optical flow full procesggsiby
using the original model which processes all theelgi in the images. It is possible to note thas thi
processing time reduction is a conjunct result g as change driven processing as hardware
computation.

According to obtained processing times considesegeral image pairs, and calculating time
average, it is possible to say that the changesdroptical flow processing in conjunction with fheovative
hardware architecture can process up to 71 fpadakio account the taxi sequence, and up to 73afpag
the other sequences. This is shown in Table 3.
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Table 3. Processed frames per second.

Sequence Image size fps CsT
Taxi 190 x 256 71.94 3
Rubic 240 x 256 73.42 2
Sphere 200 x 200 77.33 1

The table 4 shows the performance comparison arsomg architectures published in recent years
including the present proposal. The four architexgiare using the same H & S algorithm [4]. It barseen
here that the proposed architecture has a reduofitimee number of processed frames per second wkich
small compared with the fastest of all [18]. Nekeléss, the architecture proposed in this work thas
advantage of adaptivity to changes in illuminaticiensity.

Table 4. Comparison with other works

Works Image size fps Iteration number
Arribas et al. 50 x 50 19 3

Martin et al. 256 x 256 60 1

Sosa et al. 256 x 256 =82 10
Proposed here 256 x 256 =74 10

It is important to note that the number of iteratigperformed in the three other works is different.
When using a greater number of iterations the ethminishes. Cobos et al. [16] reports the usehoéd
iterations. Martin et al. [17] reports only onerétton and storage of the resulting optical flowitsoan be
used by the next Laplacian computation. This idgoered for 60 frames before showing systems results
The processing of frame number 61 requires theutzlon of a new set of optical flow vectors. FigdlL8]
reports 10 iterations but, uses a change drivecggsing with a fixed threshold.

6. CONCLUSION

The change-driven image processing strategy pregentthis work allows the implementation of a
new architecture for speeding-up the optical-flommputation under varying illumination. This methisd
based on pixel change instead of full image prangsand it shows an improved speed-up.

In order to achieve the correct adaptation to ilhation changes the analysis of each consecutive
image pair acquired while determination of change#iumination intensity is necessary. This is foemed
by introducing a module capable of detecting charigdllumination intensity between consecutive ges
in a pair, this module employs a threshold soiit distinguish a real movement from an apparent mewve.

The threshold is calculated considering a setx#lpifrom the consecutive image pair.

The performance of the system has a direct deperden the number of pixels changing for
consecutive images. And this number of pixels ddpeon several factors, such as: the sequence
characteristics, the image size, the environmenthef place where images were acquired, the camera
sensitivity, the capture image frequency, the allgor for CSTdetermining and th€ST value set. All these
factors affect the number of pixels changing andicithe possibility of processing a constant amaafnt
images.

The architecture has been developed and implememtedn FPGA platform. And has been
evaluated using classical optical flow test seqasrand full-custom sequences. The average ersimikar
to other full-processing implementations, but thstem proposed here is faster. The number of fasctn
be processed depends on the image changes. Iwalisit is not possible to predict a fixed numbér o
images processed. The results obtained with theabftow image test bench have determined that the
system is able to process 90 frames of 256x256Igwey image data per second, under varying illatidom.
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